If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-u^2-4u+5=0
We add all the numbers together, and all the variables
-1u^2-4u+5=0
a = -1; b = -4; c = +5;
Δ = b2-4ac
Δ = -42-4·(-1)·5
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6}{2*-1}=\frac{-2}{-2} =1 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6}{2*-1}=\frac{10}{-2} =-5 $
| 3(-1)+5y=27 | | 19w-13-6w=-36 | | 3(x+7)+9=2(-6-x)-2x | | 12(2x-1)=8(2x+1)=44 | | -36=-17-v | | 4x^2−4x=1 | | (3/7)x=130-x | | 4x2−4x=1 | | 0.15(x+1.50)=11.50 | | 9+b=8 | | 3(2x+18)=-3x-27 | | 9x/7=180 | | 245=-17n | | ,7+2x=4x-3 | | 2x-1=4÷ | | 13(x-15)-11(x-19)=0 | | 4(2x-1)+2x=3(2x-8) | | d-8÷(-2)=12 | | 1/2*x^2-5=5 | | d-8÷(-2=12 | | (2x+1)(3x-2)=5 | | 8d÷-2=12 | | 7/x=8/5x-6 | | -17=3+x | | 7x=85x-6 | | 0.03(3t-2)=0.09(t+5)-0.51 | | 12x-4-3x=8x-5+12 | | P=4b | | 2/5x+1=-4 | | -4=-5+m÷2 | | 9x-(7x+8)=5x-32 | | -4=(-5+m)÷2 |